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Quantum Knizhnik-Zamolodchikov equation for U,&,) 
and integral formula 

Take0 Kojimat and Yas-Hiro Quanot$ 
t Research Institute for Mathematid Sciences, Kyoto URivenily, Kyoto 606, Japan 
$ Institute for Nuclear Study, University of Tokyo. Tanashi, Tokyo 188. Japan 

Received 13 April 1994, in final form 3 August 1994 

Abstract. An integral formula for solutions to the level-zem A w n N m  Knizhnik- 
Zamolodchikov equation associated with the vector representation ofJq(S6) is presented. This 
formula gives a generalization of both our previous work for U,(&) and Smimov's formula 
for form factors of the SU(n)  chiral Gross-Neveu model. 

1. Introduction 

In our previous paper [I], we gave an integral formula for solutions to the-quantum 
Knizhnil-Zamolodchikov (KZ) equation [2] for the quantum affine algebra U,(&) when 
the spin is 4, the level is zero and 141 < 1. The present paper is a Uq(&) generalization of 
[l]. Our approach is based on [3]. Instead of solving the quantum KZ equation, we consider 
a system of difference equations for a vector-valued function in N variables (z1, . . . , ZN) 
w h i g  takes values in the N-fold tensor product of the vector representation V = Cn of 

For a fixed complex number q satisfying 0 e 141 e 1, let R(z )  E End(V 8 V )  
be the standard trigonometric R-matrix associated with the vector representation V 1 
CUI 8 . . . 8 Cu,, of U,,(sk,). The matrix R ( z )  satisfying the Yang-Baxter equation and 
the unitarity relation is 

V&[n). 

R(Z)U,; @us; = cue, @ u e 2 R ~ ~ ~ ( z )  
EIJ2 

where the non-zero entries are 

R::(z) = 1 

In statistical-mechanics language, each entry of the R-matrix is a local Bolmann weight 
for a single vertex with bond states i, j ,  k, I E En: 

0305-4470/94~06807+20$1950 @ 1994 IOP Publishing Ltd 6807 
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k 
I 

1 

where each line carries a spectral parameter. 
In what follows, we shall work with the tensor product of finitely many V's. Following 

the usual convention, we let Rjr(z )  ( j  # k) signify the operator on VeN acting as R(z)  on 
the ( j ,  k)th tensor components and as an identity on the other components. In particular, 
we have Rkj(z) = PjkRjk(z)P,k where P E End(V 8 V) stands for the transposition 

The equations we are concerned with in this paper are those for (1) R-matrix symmetry 

(1.1) 

P ( x  8 y )  = y 8 x .  

and (2) deformed cyclicity for a function G(z1, .  . . , Z N )  E V"": 

(1) Pjj+IG( ..., z j+ t , z j ,  ... ) = R j j + l ( z j / z j i + i ) G (  ..., z j . z j+ i ,  . . . I  
(2) Pi2 . - . P N - I N G ( Z Z ,  ... , Z N .  Z l q - 2 " )  &G(Zi, .  . . , Z N ) .  (1.2) 

In (1.2), D1 is an operator acting on the first component as D = diag(d1, . . . , &), the entries 
of which will be specified below, and an identity acting on the other components. These 
are two of the axioms that form factors in integrable models should satisfy [4]. Smirnov 
[4] also pointed out that (1.1) and (1.2) imply the level-zero quantum Kz equation [2] 

G(zi, .. . , z j q  2n , . . . , Z N )  = Rj-1 j ( Z j - i / Z j q  ) 2n -1 2n -1 -1 . . . R I  j ( Z i / Z j q  Dj 
x R j N ( z j / z N )  ... R j j + l ( Z j / Z j t l ) G ( Z l  , . . . , Z j ,  . . . q Z N ) .  (1.3) 

Throughout this paper, the functions we consider are not necessarily single valued in zj but 
are meromorphic in the variable logzj. Accordingly, the shift zj  --t zjqT2" as in (1.2) is 
understood to mean log zj --t log zj - 2n log q .  

In the following, we set t = q-'. Define the components of G by 

where 

and (1.2) reads as 
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Note that the singularity at z j  = zj i l  in (1.6) is spurious. Equations (1.5H1.7) split into 
blocks, each involving components such that 

In the present paper, we restrict ourselves to the case ml = , , , = m, = m and, hence, 
N = mn. According to this restriction, we set 8, rm!l-n)fZ(l-i). 

We use the abbreviation 20) = ($), . . . ,z,!?). Consider the extreme component 

Because of ( lS) ,  this function is symmetric in the variables d l ) ,  ..., z@), separately. 
Equation (1.6) tells us that all the components with fixed m are uniquely determined from 
H. Conversely, given any such H ,  the Yang-Baxter equation guarantees that (1.1) can be 
solved consistently under condition (1.8). 

We wish to find an integral formula of the form 

H(Zl , .  . . I z r )  = (SYNF)(ZI.. , ., Z N )  (1.9) 

where SMN stands for the following integral transform: 

(SYNF)(ZI, I . .  I Z N )  

ihl " ' i h M F ( x 1 , .  .. , x Y l z l t . .  . , z N ) q ( x l , ,  ..? x Y [ z l . ~  , . , z N ) .  

(1.10) 

The notation is explained below. 
The kernel Y has the form 

where 

Assume that the function 6 is antisymmetric and holomorphic in the xP E C\{O}, is 
symmetric and meromorphic in logzj E C and possesses the following transformation 
property: 

The function 6 is otherwise arbitrary and the choice of 6's  corresponds to that of 
solutions. The integration &hP is along a simple closed curve C = C(z l , .  . . , Z N )  
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oriented anticlockwise, which encircles the points zjr-n+i-Znk (1 < j Q N, k > 0) but 
not Z.rn-i+Znt J (1 Q j < N, k 2 0). Finally, 

T K o j i m  and Y-H Q u a m  

A ( m ) ( ~ , ,  . . . , X M I Z ( " ) I . . . I Z ( ~ ) )  n n n(zj (k )  -z j r  (k') 7 2 ) 

k 4  

(1.12) F ( x 1 , .  . . , X M \ Z ( " ) ~ .  . . [ z ( ' ) )  = n m m  

k.k'=l j = i  j,=I 

where A(m) is a certain homogeneous polynomial yet to be determined which is 
antisymmetric in the variables ( X I , .  . . , x.) and symmetric in the variables z ( I ) ,  . . . , z("). 

separately. 
The rest of the paper is organized as follows. In section 2, we introduce a special basis 

of V in terms of the quantum monodromy operators. In section 3, we describe the main 
theorem of the present paper. The subsequent two sections are devoted to the proof of our 
main theorem; section 4 for m = 1 and section 5 for the general case. In section 6, we 
discuss the relation between other works and our own. 

2. Quantum monodmmy operators and the special basis 

We shall construct a special basis {w O,.. .OIN (zl, . . . , ZN) ]  with a j  E {1,2, . . . , n] of V" 
depending on the parameter (21, . . . , Z N ) ,  which satisfies 

Pjj+lw...uj+,uj...(. . . , Z j + l . Z j ,  . . .) = R j j + i ( z j / z j + l ) w  ...,,+ ,... (. .. * z j ,  z j + i , ,  , .). (2.1) 

The procedure is as follows. Define the quantum monodromy operator Ze3(z1, . . . , z ~ l t )  E 
' End(VaN) by 

RI N+I (ZI  ' ' ' RN N t  I ( Z N / t )  = (Zs' (21 Y ' ' ' * ZN Ic))l<e.Z<n. (2.2) 

Here the n x n matrix structure is defined relative to the base VI,. . . , U, of the (N + 1)th 
tensor component of V""+') 
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1 ... 1 1 

Let us intmduce the ordered indices. Set (el, ..., a x )  > ( E ] ,  . . . , E N )  if and only if 
a i  = ~ i .  (1 < i < k) and ak+l > E ~ + I .  Define the components of the basis by 

W q . . . a n  (21, . . . , Z N )  = ut, @ , ' ' @ U EN WE1"'" O . , . . . C I N ( Z 1 , - . . , Z N )  (2.4) 
a. .... 

then we have 

if ( a l , .  . . , U N )  < ( c l , .  . . , E N ) .  (2.5) WL," .LN 
q...H(Z1. , , . I Z N )  0 

Furthermore, for j?3 = (n, . . . , n,  . . . , 2 , .  . . , 2 , 1 , .  . . , l), we have 

(2.6) w ~ ( z I , .  B . . , Z N )  = n b(zx/zj). 

kcf,lcJ: 
i < j  

From (2.1), (2.5) and (2.6), we obtain the following explicit formula: 



Furthermore, we obtain the recursive residue formula 

Res,,,,,,t . . . Res,n=4_,,z we ,... a v ( z ~ ,  . . . , Z N )  = n blzjlzi)  
%>C) 
i C n < j  

x(Resz,,,rz. ..Reszn,blrz wn.. . l(zl , .  .. . z d )  @ wea+l-=N(z"t i7 . .  . , za)  
(29) 

for ai = n + 1 - i (1 < i < n). By combining (2.1) and (2.9) and using (2.7). we have the 
useful expression 

for U' = (ai,. . . ,&,, . . . ,CY.&, . . . , unm-i) and U,; = n + 1 - i ( 1  < i < n). Here we use 
the abbreviation z ' (~ )  = ( z f ) ,  . . . , z , , , -~) .  (i) 

3. Main theorem 

Now we present the main theorem of the present paper. In what follows, we use the 
abbreviations 

ti) ti) - zo') = (z?), . . . , zm-, ,  z, 1 - (z 
z ,  r ) Zt i ) t* l  = 0') * I  ti) @ I ,  ti) +I ( z ,  t , . . . , z,-~ z ,  r = (z'U)r+', 0') *' 

X = ( X I ,  . . . 9 X M ) .  
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The polynomial A('") in (1.12) is given by 

A('")(xlz(")[. . . lz@)lz(')) = det(Ay)(x,lz(")I . . . lz(z)[z(')))lGA,pGM (3.1) 

where M = M,,, = (n - 1)m - 1 and N = mn. The entries of the M x M matrix A('") are 
defined as follows. Let us introduce the polynomial 

A-l 

fjN)(ylzl,. . . , zN) = C(-1Y((yr)*-' - (yr-')"-")uK(zl,. . . , ZNO 
K=O 

where o;u(zl, . . . , z,) denotes the ~ t h  elementary symmetric polynomials 
n n 

n(t + Zj) = O,(Zl, . . . , Zn)t-. 
j = l  x=o 

Note that for 01 > 0 

Define the polynomial 

r , . . . , z(')r-l . (3.3) Xrn+I-B z(")r,, , . , z(k t l ) r  - z(k-U -1 x : f ; ( n - ~ ~ m )  

This is a homogeneous polynomial of degree m + A - 1, symmetric with respect to 
the Z ( ~ ) ' S  for each k, separately. By constructions (3.1) and (3.3). A('") is a homogeneous 
polynomial of degree M,na + M,,,(M, -!- l)/2 with the correct symmetries. For n = 3, it 
reads as 

) 
h ( I  

The following is the main theorem of this paper. 

Theorem 3.1. The integral formula 

satisfies (1.1) and (1.2) with (81, S,, , . . ,a,) = (r-("-l)'", ~ - ( * - l ) ' " - ~  ,..., d n - l ) ( " ' + * ) )  

where H is defined by (1.9)-(1.12) and w,(zl,. .. , Z N )  is defined by (2.2)-(2.3), 
respectively. 

First of all, we note the following lemmas. 



This can be proved in a similar manner to that used for n = 2, see [l]. 
To prove theorem 3.1, it is sufficient to show (1.7) for n cases: i.e. 
- I I  

G*...r...r...'e(z(") I , , , p, 

(3.4) 
for i = 1, . . . , n. 

recursively as follows 
Let ZY) = z(n-k)m+j for n k 2 2 and zJ(') = ~ ( ~ - ~ ) ~ + j .  Let us define J ; ( j , ,  . . . , A - 1 )  

Equation (3.4), for i = 1 and 61 = ~'"( l -") ,  is satisfied if the following proposition holds. 

Proposition 3.3. 

In section 4, we prove theorem 3.1 for m = 1. In section 5, we verify proposition 3.3 and 
also show that (3.4), for i # 1, reduces to proposition 3.3, which implies theorem 3.1 for 
any m. 
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4. The m = 1 case 

In this section, we provc thcorem 3.1 form = 1. Notice that form = 1, AP)(xlz)  coincides 
with 

1 

)%n(Zl,  ..., Z n )  (4.1) ) - C(-1y A - ~ ( ~ . n ( A - x ) + x  - 7 -n(A-u)-x A?)(XIZI ,..., - X 
x=o 

and that it is linear with respect to the z's. In this case, zi = zy"". In this section, 
we use the abbreviations A ( ] )  = A, A(') = and A!) = AA. Since the polynomial 
A ~ ( x l z l ,  . . . , z,) is symmetric with respect to the variable (zl, . . . , zn), by using (1.6), we 
obtain 

(-7)i-iff(2i, . . . , Zn) .... i . . . li  - G(zi,  ..., z,) - 

G ( z I ,  . . . , z.) 

G(zz ,  .... Z ~ . Z I T  

(4.2) 

iG(zi, ..., z ~ ) " " ' ~  6l = r1-n (4.3) 

6. - &r2-Z. (4.4) G(zz, . . . ,  z n r z l r  ) - &G(zI ,  . . . , z~)""'"' I -  

t". , . i , . . l  - 
- ( - r y H ( Z l ,  ..., z,). 

Thus 
zn n...21 = 6 

implies 
a .... ;...1i - 

Consequently, to prove theorem 3.1 for m = 1, it is enough to show (4.3). 

Lemma 4.1. 

Now we prepare the following lemmas. 

&, . . . , x.-z~zI,.  . . , Z ~ ) ~ ~ , = ~ , ~ ~ - Z  = 0 ( j  = 2,3,  . . . , n). (4.5) 

I = A [ (XC"-' - Z i )  f i (X - ZjT-"") - (XT-"" - Z i )  fi(X - Z j 7 " - ' )  
j=3 j=3 X 

(4.6) 
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Proof. Let us first show that 

T Kojima and Y-H Quano 

d e G , P ) ~ ~ , P , ~ ~ ~ - ~  = det(Ci,,)lg,P.~~.-z (4.7) 

CA, = 

Cip = 

where 

A.x(zir-' lzi t-",zz,  ..., zn)  i f p = l  
( X , - Z I T ) A A ( X ~ I Z I T - ~ , Z Z  ,..., z n )  if p #  1 

A ~ ( z l T I z t r n , z z ,  ..., 2") i f F = I  

( x P  - ~ ~ T - ' ) A I ( x & T " ,  ZZ, . . . , z,) if p # 1. I 
Perform the following elementary transformations to the matrix ( C A , ) ~ < A , ~ < ~ - ~  

( I )  (ith row) - zlr"-I((i - I)st row) 
(2) (ith column) + z l r ( ( i  - 1)st column) 

(i = 2, .  . . . n - 2) 
( i  = 2 , .  . . , n - 2)  

and to the matrix ( C Q I < ~ . ~ C ~ - Z  

(1) (ith row) - zlr-"+'((i - 1)st row) 
(2) (ith column) + z l s - ] ( ( i  - 1)s t  column) 

(i = 2 . .  . . , n - 2) 
(i = 2, . . . , n - 2). 

Then we have (4.7) and, therefore, (4.6). 

Because the polynomial A ~ ( z 1 ,  ..., z,) is symmetric with respect to ( Z I  ,..., z n ) ,  
proposition 3.3 holds if the following proposition holds: 

Proposition 4.3. 

Proof. Due to the linearity of the determinanf we have 

xu - ZIT"-l n-2 "-2 

-t c n X P  - zlT"+l S(X"lZ1  Izz. . . ., Z") 
"=I u=1 

where 

Hence, we get 

6(ZIT"--', xz,  . . ., Xn-ZIZl, . . .. zn) 

(4.9) 

(4.10) 
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From lemma 4.2 and (4.10), we obtain 

(4.11) 

The polynomials d and A have the same factor nl(p<vGn-z(~,, - xu). Furthermore, 
the degrees of d and A with respect to xp are at most (n - 2). Thus, we get 

n-2 

lhsc"<n-Z p= I 
=c(zI.  ..., zn) n ( x , - x ~ n ( x , , - z I r " - ~ )  (4.12) 

where c (z l , .  . . , z . )  is a homogeneous rational function of (21.. . . , z . )  with total degree 0. 
From lemma 4.1, c has zeros at z, = z1r.2n-2 and may have poles at only zj = ~ 1 5 ~ .  Thus, 
c must have the form 

By comparing both sides of (4.12) at zl = 0, we obtain s = 0. 0 

Therefore, by taking symmehy (4.2) into account, theorem 3.1 for m = 1 is proved 

5. General case 

In this section, we prove theorem 3.1 for the general case. Let II = { ( y l ,  ..., %)I n 2 y~ > 
. . . M > 1) for 1 < I < n - 1. Fix non-negative integers m ( y l , .  . . , E) for 1 < I < n - 1 
and set 
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For n = 3, this reads as 

where 

and 

For n = 3, this reads as 



(5.3) 

One of the most important observations is the following proposition. 
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The polynomial A?) satisfies the following recursion relation: 

A:"(xIz(~)I ... k ? ) ) I & i ~ + . ~  (k=I ,....") 

T Kojima and Y-H Quano 

By combining (5.6) and (5.7), and using the same argument as that in the proof for 
proposition 5.1, one can prove the following proposition. 

Proposition 5.2. The determinant A@" obeys the following recursion relation: 

A("')(xi, . . . , XMIZ(")I . . l~( ' ) ) l~ i? , ,+-~~,~,~ ,....") 

M 
= n (xp - ar*- l )  (-1)E-l mn-m-n+i+pj 

p=1 lcp, <,..<U*-,<(A 

x det(h~m-'lO)(x,, I z ' ) ) I < ~ , . < ~ - ~  A("'-')(x \ {xp) lz ' )  (5.8) 

where we use the abbreviation xp = ( x p , ,  . . . , xp.- , ) .  

The following are two key theorems. 

Theorem 5.3. Let P(m)  be proposition 3.3 for m > 1. Then for m > 1, P(m) under the 
restriction I$') = a. . . , ,z:) = arb4 , zm-1 ( I )  = ath-' holds if P ( m  - 1) holds. 

Proof. Using the relation 
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where we use the abbreviation z" = ( ~ ' ( " ' 1  ' ' .  Iz l(2) IzI (1) , . . . , zi12) .  Thus, the claim is 
verified. 0 

Theorem 5.4. Let P(m) be proposition 3.3 for m > 1. Then P(m) under the restriction 
2 2 )  = zor2,. . . , ~ $ 1  = z0r2n-2 holds. 

Proof. Under the restriction in consideration, there is only one non-zero term in the LHS 
of (3.6) and the only non-zero coefficient v('") is 

Note that in the RHS there exists a zero and a pole under the restriction. Thus, we have to 
first set 2 2 )  = a , .  , , , z$) = and reduce, then we have to set a = zor2 to evaluate 
the RHS 

A(m)(xlz(")I ' ' ' 12(2)12'(1), ZO)I~llor'"+*-U(k=2,.,.,n) 

M 

x n ( x p  - zOrn-I) 

x det(hp-l)(x,, Iz ' ) )~< i ,~~~- lA@"- l )  ( x  \ Ixp)lz'). 

(-l)Ey.,l mn-m-n+i+pi 

@=I IhpIC...Ep"-ICM 

(5.12) 

0 

We now wish to show proposition 3.3. First, note that the LHS of proposition 3.3 has 

Therefore, this proposition follows from (5.11) and (5.12). 

no singularity at z'(l) = zor2n-2. Thus, let us prove the following proposition. 

Proposition 5.5. 

A @ ) ( X l r  . . . , x M l z ( ~ ) ~ z ~ ~ - ' ) l . .  . IZ'(I), z0)l L, e, =10r2n-I = 0 (k = 2 , .  . . ,a ) .  (5.13) 

Proof. By the same argument as that used to prove proposition 5.2, we have an equation 
which can be obtained from (5.5) by replacing A --t and A -+ i. Since the last row 

0 obtained in this way vanishes, the claim of this proposition is verified. 

Using a general m analogue of (4.9), we can prove the following proposition 

Proposition 5.6. 
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where 

T Kojima and Y-H Quano 

gl(xlz""'lz("-l'l ' ' ' Iz'(l'lz0) 

Now we are in a position to prove proposition 3.3. 

Proof of proposition 3.3. From proposition 5.5, both sides of (3.6) are homogeneous 
rational functions of degree Mm + M(M - l)/2 with simple poles located at z'(') = zor2. 
Taking into account the antisymmetry of the x+'s, equation (3.6) holds if both sides of (3.6) 
coincide at (n - l)m2 points z(") = zoz2 and z") = z(')r2(a < b). From proposition 5.1, 
both sides of (3.6), after L times' restriction, can be expressed as follows 

LHSlr~triCtioor = deW?',(x,, IS))ICW.~CLSL(X \ (+D (5.14) 
lC+l <-cprCM 

wSl,oistions = det(hhll),(x,It))li.,iCLSR(x \ b,D. (5.15) 
l < p ~ + . < p ~ < M  

Here, S L ( ~ I . .  . . , ~ M - L )  and S ~ ( y 1 . .  . . , y . + ~ )  are skew symmetric with respect to 
( y l , .  .. , ~ M - L ) .  Note that the degrees of S ~ ( y l , .  . .) and SR(YI, ... ) with respect 
to yl are M - L -!- m - 1. Furthermore, det(h?t(yl, ~ 2 ,  ..., y L(())IS..~<L = 

YF+"-L + ". . By comparing the coefficients of the LHSl,dctiOns CY1 Y2 
and ~ ~ ~ l , h ~ t i ~ ~ ~  with respcct to X ~ + ' " - ' X ~ ' ~ - ~  I we conclude that the 
LHSlm,,.iCtioo = RHSlreslricrian if and only if 

M+m-I M + m - 2 , ,  , 

SL(x l ,  ..., x n a - L ) = S R ( X I , . . . r X ~ - L ) ,  (5.16) 

Consequently, taking into account the antisymmetry of the xp's,  we have only to examine 
LHslmhction = RHSlrssdslion at (n - l)mZ - Lm planes. After repeating this procedure, 
equation (3.6) reduces to theorem 5.3 and 5.4. For simplicity and clarity, we first 
demonstrate how this induction scheme works when n = 3. 

1, let m(a, 6) stand for the number of restrictions z(') = z(a)rz and 
let 0 < / < 1 be the number of restrictions zc5) = zor2. We denote such restrictions by 
(1, m(2, 1) tm(3 ,Z))  and introduce a lexicographical order by (1, m) > (1, m - 1) > . . , > 
(1.0) > (0, m) > . . . > (0,O). The restriction ( I ,  k) is larger than (if, k') if (/, k) > (l', k'). 
We wish to show that (1, m(2, l )+m(3,2))  reduces to larger restrictions and (1, m) reduces 
to theorem 5.3 and 5.4. 

For 3 2 a > b 

Firststep. Set(l,m(2, l)+m(3.2)) = (1 ,m).  In thiscaseweneedmz-m(lim(3, 1)) 
planes on which (5.16) holds for L = m t 1 + m ( 3 ,  1). We have m restrictions which reduce 
to theorem 5.4 and m(m - 1) - m(2. l)m(3,2) restrictions which reduce to theorem 5.3 and 
(m - 1 - m ( 3 , l )  - m(3,2))(m - 1 - m(3, 1) - m(2,l))  restrictions which reduce to the 
previous two restrictions. Hence, we actually have m1 - m ( l  t m(3,l))  + (m(3,l) + 1)' 
planes. 

Second step. Set (1, m(2.  1) + m(3,Z)) = (1, k) where k < m. In this case, we 
need 2m2 - m(l + k + m(3, I)) planes on which (5.16) holds. We have m restrictions 
which reduce to theorem 5.4, k(m - 1) - m(3,2)m(2, 1) restrictions which reduce to 
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theorem 5.3 and (m - k)(2m - k - 2)  restrictions which reduce to larger restrictions. We 
also have (m - 1 -m(3,  1) - m(3,2))(m - 1 - m(3, 1) - m(2,I))  additional restrictions 
at z(I)  = which reduces to the previous three restrictions. Hence, we have 
2m2 - m(1 + k + m(3,l)) + (k  - m + 1 + m(3, I)/ZJ2 + m(3,1)(3m(3,1) +4)/4 planes. 

Third sfep. We can show in a way similar to that used in the second step that this 
induction scheme works for 1 = 0. 

Therefore, equation (3.6) is proved for n = 3. Next, we show (3.6) for general n. 
Let I denote the maximal length of restrictions such that z("+'-') = z ( " + ~ - % ~  = . . . = 

Z(")Z'-~ = z0?. Let rj(1 < j 6 n - 2) denote the number of restrictions of type 
z @ )  = z(k+1k2 = . . . = z ( ~ + ~ ) z * J  where 1 < k < n - j .  Set L = cyif j r j .  We introduce 
the lexicographical order in ( (1 ,  L ,  rn-z,. . . , r I )  I 0 < L + /  6 (n  - 2)m + I ]  by 

(n - 2 ,  (n -2) (m - 1) + 1,m - 1,0, ..., 0, 1) 
> (n - 2 ,  (n - 2)(m - 1) + l , m  - 2, 1,0,. . . ,O. 2)  
> ... > (0, l , o  ,..., 0 , l )  > (O,O,O,O ,..., 0). 

At the stage of induction of type (1, L ,  rn-z,. . . ,T I ) ,  we need more than or equal to 
(n - I)mZ - m(l + L )  restriction planes. 

Remark 1. In the expression for (5.1), let us call the z ,  which belongs to one of the <"), 

free z. Then we have at least m - 2 free z's. 

Remark 2. There are restrictions which are not counted by rj ( j  = 1, .  . . ,n  - 2). 
e.g. restrictions counted by m(a,b)  where a - b > 1. Let us call such a restriction 
a bad resfricfion. Even if we need less than or equal to m bad restrictions to obtain 
(n - l)m2 - m(/ + L )  restriction planes for (1,  L ,  rn-2,. . , , rl) ,  our induction scheme does 
work because, after a bad restriction, we still have the same number of not bad restrictions 
as that for ( 1 ,  L ,  rn-z, . . . , r I ) ,  while we need only (n - l )mz - m(l + L )  - m restriction 
planes. 

Firsfstep. Set ( I ,  L,r,-2, . . . , r j )  = (n-2, (n-2)(m-l)+l,m-l,O,. . . ,O, 1). Then, 
we need m2 - m planes on which (5.16) holds. Let us first consider m(n, . . . ,2) = m - 1, 
m(2, 1) = 1, m(1) = m - 2 and the other m ( y )  = 0. We have m planes which reduce 
to theorem 5.4 and (m - 1)' planes which reduce to theorem 5.3. Thus, we actually have 
m2-m+l planes. Next, considerm(n, . .  . ,2) = m-2andm(n-l ,  ..., 1) = 1. Inthiscase, 
we have m planes which reduce to theorem 5.4 and ( m -  1)*-(m-2) planes which reduce to 
theorem 5.3. We also have m - 2 bad restrictions. Hence, from remark 2, this case reduces 
to theorems 5.3 and 5.4. In general, when we replace (m(n, . . . ,2), m(n - 1, .. . , I ) )  = 
(m - p .  p - 1) by (m(n,.  . . , 2 ) ,  m(n - 1,. . . , 1 ) )  = (m - 1 - p .  p ) .  we need m - 2 p  
additional bad restrictions. Thus, every U ,  L ,  rn-z, . . . , r l )  reduces to theorems 5.3 and 5.4. 
In a similar way, one can show that for other restrictions of type (1, L ,  . . . , r i ) ,  we 
have m2 - m + 1 planes, while we need m2 - m planes. 

Second step. Set ( I ,  L )  = (n - 2, (n - 2)(m - 1)). Such a reshiction can be obtained 
by dividing one of the chains 
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of restriction type ( I ,  L + 1) into two pieces like 

,e) = . . . = z (k+i)r2i  (5.18) 

where O <  i < j - 1. 
Note that there are two kinds of restriction planes for ( 1 ,  L ) ,  old ones and new ones: 

old ones are restriction planes which decrease the degree of (3.6) even for (5.17); and new 
ones are those which do not decrease the degree of (3.6) for (5.17) but do decrease it for 
(5.18). 

T Kojima and Y-H Quano 

and z ( k t i t l ) r Z ( i t l )  = . , . = z(Rtj )r2j  

For example, the following restriction of type (2, L): 

21 r z, (3) - - zI (4) 2 = . . . = (d 2Cn-3) = z0r2(n-2) 

(2) - (31 2 - . . . = Z!n)r2(n-2~ zi - zi r - 
z:) = Z $ ) r 2  = , . . = Z ( n - l ) r 2 ( n - 3  

(1) - (2) 2 z1 - z l  r 

< - 
m 

can be obtained from the following restriction of type (2, L i 1): 

=. .. = z(n-3) = z,,r~(n-2) ZI r zo) - (4) 2 

zi (2) - - z l  (3) r 2 = ...  =z!"'r2('-') 

z(I) - (2) 2 

(5.20) 2 < i < m 
1 - - I 5  

by resetting the relation between 2g-I) and z:). For (5.20). we have m2 - m 4 1 restriction 
planes 

(2) - (3 2 

zk ( I ) -  - z l  (')' r 
1 < j < 
2 < i , < m , l < k < m - l  

zj - z1 r 
(5.21) 

(5.19) 

which reduce to theorems 5.3 and 5.4. For (5.19), m2 - m + 1 restriction planes 
(5.21) are old. On the other hand, restriction planes z2-I )  = z$)r2, zp) = z$)r2 and 
zk (I) - -2, ")r2(1 < k < m - 1) are new. 

It is evident that the number of restriction planes for (2, L + 1) and the number of 
old restriction planes for (1. L )  coincide. Thus, in order to show this case, we need 
m2 - (m2 - m + 1) = m - 1 new restriction planes. 

Let us consider the case i = 0 in (5.18). Now there are p free 2's belonging to 
and m - 1 - p free z's belonging to 5 " )  where i # k and 1 < p < m - 1. Thus, we have 
at least p t p(m - 1 - p )  > m - 1 new restriction planes. One can show the other case 
1 < i < j - 1 similarly. Hence, this reduces to larger restrictions. 

Third step. Suppose we have a sufficient number of restriction planes to prove (5.16) 
for a restriction of type (n - 2, L. rn-z, , . . , r1) where L < (n - 2)(m - 1). If we replace 
L by L - 1, we need m new restriction planes. On the other hand, there are now at least m 
free z's. Thus, by an argument parallel to that given in the second step, this case reduces 
to larger restrictions. 

Fourth step. Suppose that we have a sufficient number of restriction planes to prove 
(5.16) for the restriction of type ( I ,  L ,  ra-2, . . . I r l )  where L < (n -2)(m - 1). If we replace 
1 by 1 - 1, we need m new restriction planes. Now we have at least m free 2's. Thus, from 
the same argument given in the second step, this case reduces to larger restrictions. As for 
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the restriction obtained by replacing L by L - 1, the argument again perfectly parallels the 
one given in the second step. 

Therefore, after repeating this procedure, we finally reach 

(1, L ,  rn - z , .  . . , rl )  = (0,. . . ,O) 
and this is what we wish to prove. 

the residue formula for ?? defined below. 
Next we note that proposition 3.3 implies (1.7) for €1 = i .  For that purpose, let us seek 

Let 

and 

Then, we have 

$)(xlz) = (-+I ( _ l ) E : L , m n - m - n + i + y  

~<II Ic. . .cIL~.I<M 

--Dn-l) p 
x det(h$"')(x,, IZ ' ) ) I<~ ,~<~- IG~  (2 lz). 

Therefore, (3.4) for i # 1 reduces to proposition 3.3. 
Thus, we have proved theorem 3.1. 

6. Conclusions and discussions 

In this paper, we have presented an integral formga for the level-zero quantum KZ equation 
associated with the vector representation of U,(&). This work is a generalization of our 
previous paper [l]. Smimov obtained the formula for form factors of the SU(n)  chiral 
Gross-Neveu model in appendix A of his book 131. It gives a rational scaling l i t  of the 
present work (i.e. q = e€, z = e-m@'ni), E --t 0). Smimov 131 has studied form factors 
of integrable massive theories; equations (1.1) and (1.2) are two of the axioms proposed 
by him that form factors obey. Let G(z)  be a form factor of a certain operator. Then a V 
function in the integral kernel should be determined. It is interesting and important to solve 
this problem. 

Finally, we discuss related works on the integral formulae for quantum KZ equations. 
In [5],  an integral formula for correlation functions of the X X Z  model was obtained on the 
basis of the bosonization of the level-one highest-weight representations of U,(&). This 
scheme gives only one particular solution though these correlations satisfy the quantum 
KZ equation of arbitrary level. A formula for a higher spin analogue of the XXZ model 
in t%ms of a Jackson-type integral was given in [6] by using the level-k bosonization of 

In [7, 81, solutions using Jackson-type integrals are obtained. These formulae are, in 
principle, valid for general levels, as opposed to our integral formula which is restricted to 
level zero. On the other hand, the problem of choosing the cycles for Jackson-type integrals, 
which accommodate the freedom of the solutions, has not been studied much. 

Uq(s[Z). 
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Tarasov and Varchenko [9] improved the Jackson-type integral formula for Uq(glJ, such 
that the solutions automatically satisfy the R-matrix symmetry. The number of Jackson-type 
integrals is n(n - l )m/2  for N = nm, whereas our formula is wrinen by a (n - I)m - I fold 
integral. For n = 2, two numbers are different by only 1; however, the difference increases 
as n increases. 
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